Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Methods Cell Biol ; 185: 165-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556447

RESUMO

The mucosal surface of gastrointestinal tract is lined with epithelial cells that establish an effective barrier between the lumen and internal environment through intercellular junctions, preventing the passage of potentially harmful substances. The "intestinal barrier function" consist of a defensive system that prevent the passage of antigens, toxins, and microbial products, while maintains the correct development of the epithelial barrier, the immune system and the acquisition of tolerance toward dietary antigens and intestinal microbiota. Intestinal morphology changes subsequent to nutritional variations, stress, aging or diseases, which can also affect the composition of the microbiota, altering the homeostasis of the intestine. A growing body of evidence suggests that alterations in intestinal barrier function favor the development of exaggerated immune responses, leading to metabolic endotoxemia, which seems to be the origin of many chronic metabolic diseases such as type 2 diabetes mellitus (T2DM). Although the mechanisms are still unknown, the interaction between dietary patterns, gut microbiota, intestinal mucosa, and metabolic inflammation seems to be a key factor for the development of T2DM, among other diseases. This chapter details the different techniques that allow evaluating the morphological and molecular alterations that lead of the intestinal barrier dysfunction in a T2DM experimental model. To induce both diabetic metabolic disturbances and gut barrier disruption, Wistar rats were fed a high-saturated fat and high-cholesterol diet and received a single dose of streptozotocin/nicotinamide. This animal model may contribute to clarify the understanding of the role of intestinal barrier dysfunction on the late-stage T2DM etiology.


Assuntos
Diabetes Mellitus Tipo 2 , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Estreptozocina/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Ratos Wistar , Mucosa Intestinal/metabolismo , Colesterol/metabolismo
2.
J Endocrinol Invest ; 47(4): 1015-1027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409569

RESUMO

BACKGROUND: Renal tubular injury, accompanied by damaging inflammation, has been identified to drive diabetic kidney disease (DKD) toward end-stage renal disease. However, it is unclear how damage-associated molecular patterns (DAMPs) activate innate immunity to mediate tubular epithelial cell (TEC) injury, which in turn causes with subsequent sterile inflammation in diabetic kidneys. High mobility group nucleosome-binding protein 1 (HMGN1) is a novel DAMP that contributes to generating the innate immune response. In this study, we focused on determining whether HMGN1 is involved in DKD progression. METHODS: Streptozotocin (STZ)-induced diabetic mice model was established. Then we downrergulated HMGN1 expression in kidney with or without HMGN1 administration. The renal dysfunction and morphological lesions in the kidneys were evaluated. The expressions of KIM-1, MCP-1, F4/80, CD68, and HMGN1/TLR4 signaling were examined in the renal tissue. In vitro, HK2 cells were exposed in the high glucose with or without HMGN1, and further pre-incubated with TAK242 was applied to elucidate the underlying mechanism. RESULTS: We demonstrated that HMGN1 was upregulated in the tubular epithelial cells of streptozotocin (STZ)-induced type 1 and type 2 diabetic mouse kidneys compared to controls, while being positively correlated with increased TLR4, KIM-1, and MCP-1. Down-regulation of renal HMGN1 attenuated diabetic kidney injury, decreased the TLR4, KIM-1, and MCP-1 expression levels, and reduced interstitial infiltrating macrophages. However, these phenotypes were reversed after administration of HMGN1. In HK-2 cells, HMGN1 promoted the expression of KIM-1 and MCP-1 via regulating MyD88/NF-κB pathway; inhibition of TLR4 effectively diminished the in vitro response to HMGN1. CONCLUSIONS: Our study provides novel insight into HMGN1 signaling mechanisms that contribute to tubular sterile injury and low-grade inflammation in DKD. The study findings may help to develop new HMGN1-targeted approaches as therapy for immune-mediated kidney damage rather than as an anti-infection treatments.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Proteína HMGN1 , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Receptor 4 Toll-Like/metabolismo , Diabetes Mellitus Experimental/patologia , Regulação para Baixo , Estreptozocina/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia
3.
Clin Exp Pharmacol Physiol ; 51(3): e13842, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302074

RESUMO

The effects of SGLT2 inhibitors on hepatic fibrosis in diabetes remain unclear. This study aimed to investigate the effects of empagliflozin on liver fibrosis in high-fat diet/streptozotocin-induced mice and the correlation with gut microbiota. After the application of empagliflozin for 6 weeks, we performed oral glucose tolerance and intraperitoneal insulin tolerance tests to assess glucose tolerance and insulin resistance, and stained liver sections to evaluate histochemical and hepatic pathological markers of liver fibrosis. Moreover, 16S rRNA amplicon sequencing was performed on stool samples to explore changes in the composition of intestinal bacteria. We finally analysed the correlation between gut microbiome and liver fibrosis scores or indicators of glucose metabolism. The results showed that empagliflozin intervention improved glucose metabolism and liver function with reduced liver fibrosis, which might be related to changes in intestinal microbiota. In addition, the abundance of intestinal probiotic Lactobacillus increased, while Ruminococcus and Adlercreutzia decreased after empagliflozin treatment, and correlation analysis showed that the changes in microbiota were positively correlated with liver fibrosis and glucose metabolism. Overall, considering the contribution of the gut microbiota in metabolism, empagliflozin might have improved the beneficial balance of intestinal bacteria composition. The present study provides evidence and indicates the involvement of the gut-liver axis by SGLT2 inhibitors in T2DM with liver fibrosis.


Assuntos
Compostos Benzidrílicos , Microbioma Gastrointestinal , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Glucose/metabolismo , Camundongos Endogâmicos C57BL
4.
Clin Epigenetics ; 16(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167534

RESUMO

BACKGROUND: The objective of this study was to examine and analyze differential methylation profiles in order to investigate the influence of hyper-methioninemia (HM) on the development of diabetic nephropathy (DN). Male Wistar rats, aged eight weeks and weighing 250-300 g, were randomly assigned into four groups: a control group (Healthy, n = 8), streptozocin-induced rats (STZ group, n = 8), HM + STZ group (n = 8), and the Tangshen Formula (TSF) treatment group (TSF group, n = 8). Blood glucose levels and other metabolic indicators were monitored before treatment and at four-week intervals until 12 weeks. Total DNA was extracted from the aforementioned groups, and DNA methylation landscapes were analyzed via reduced representative bisulfite sequencing. RESULTS: Both the STZ group and HM + STZ group exhibited increased blood glucose levels and urinary albumin/creatinine ratios in comparison with the control group. Notably, the HM + STZ group exhibited a markedly elevated urinary albumin/creatinine ratio (411.90 ± 88.86 mg/g) compared to the STZ group (238.41 ± 62.52 mg/g). TSF-treated rats demonstrated substantial reductions in both blood glucose levels and urinary albumin/creatinine ratios in comparison with the HM + STZ group. In-depth analysis of DNA methylation profiles revealed 797 genes with potential therapeutic effects related to TSF, among which approximately 2.3% had been previously reported as homologous genes. CONCLUSION: While HM exacerbates DN through altered methylation patterns at specific CpG sites, TSF holds promise as a viable treatment for DN by restoring abnormal methylation levels. The identification of specific genes provides valuable insights into the underlying mechanisms of DN pathogenesis and offers potential therapeutic targets for further investigation.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Masculino , Animais , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Glicemia , Metionina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Creatinina/metabolismo , Creatinina/farmacologia , Creatinina/uso terapêutico , Ratos Wistar , Metilação de DNA , Rim/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Albuminas/metabolismo
5.
Free Radic Biol Med ; 213: 52-64, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215890

RESUMO

Depression and diabetes are closely linked; however, the pathogenesis of depression associated with diabetes is unclear, and there are no clinically effective antidepressant drugs for diabetic patients with depression. Bavachin is an important active ingredient in Fructus Psoraleae. In this study, we evaluated the anti-neuroinflammatory and antidepressant effects associated with diabetes and the molecular mechanisms of bavachin in a streptozotocin-induced diabetes mouse model. We found that bavachin clearly decreased streptozotocin (STZ)-induced depressive-like behaviors in mice. It was further found that bavachin significantly inhibited microglia activation and the phosphorylation level of PKCδ and inhibited the activation of the NF-κB pathway in vivo and in vitro. Knockdown of PKCδ with siRNA-PKCδ partially reversed the inhibitory effect of bavachin on the NF-κB pathway and the level of pro-inflammatory factors. We further found that PKCδ directly bound to bavachin based on molecular docking and pull-down assays. We also found that bavachin improved neuroinflammation-induced neuronal survival and functional impairment and that this effect may be related to activation of the ERK and Akt pathways mediated by the BDNF pathway. Taken together, these data suggested that bavachin, by targeting inhibition PKCδ to inhibit the NF-κB pathway, further reduced the inflammatory response and oxidative stress and subsequently improved diabetic neuronal survival and function and finally ameliorated diabetes-induced depressive-like behaviors in mice. For the first time, we found that bavachin is a potential agent for the treatment of diabetes-associated neuroinflammation and depression and that PKCδ is a potential target for the treatment of diabetes-associated neuroinflammation, including depression.


Assuntos
Diabetes Mellitus Experimental , Flavonoides , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Doenças Neuroinflamatórias , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Simulação de Acoplamento Molecular , Microglia
6.
Redox Biol ; 70: 103044, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266577

RESUMO

Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.


Assuntos
Dinaminas , Traumatismo por Reperfusão Miocárdica , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Ratos , Cálcio/metabolismo , Doença da Artéria Coronariana/metabolismo , Hiperglicemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Dinaminas/metabolismo
7.
Circulation ; 149(9): 684-706, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994595

RESUMO

BACKGROUND: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS: The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS: Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS: Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Células-Tronco Pluripotentes Induzidas , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipídeos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Estreptozocina/metabolismo , Estreptozocina/uso terapêutico , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismo
8.
Ultrastruct Pathol ; 48(1): 1-15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37927047

RESUMO

Diabetes mellitus (DM) is one of the most common metabolic diseases causing damage in many organs in the body including the testes. Royal Jelly (RJ) is one of the honey bee products that has antioxidant, anti-inflammatory and antidiabetic properties. This study was performed to evaluate the changes in the microscopic structure of the testes in Streptozotocin (STZ)-induced diabetic rats, and the possible protective role of RJ. 60 adult male albino rats were divided into three groups. Group I Control group, Group II STZ group, and Group III STZ+RJ group. Group II received a single dose of STZ (50 mg/kg) by intraperitoneal injection. Group III received a single dose of STZ as in the second group then received RJ orally by intragastric tube in dose of (100 mg/kg/day) for 4 weeks after confirmation of diabetes. Light and electron microscopic studies were performed. Group II revealed marked structural changes affecting seminiferous tubules with sever reduction in germinal epithelium and loss of mature spermatozoa in their lumina. The interstitial tissue revealed degenerated Leydig cells and congested blood vessels. Mallory trichrome stained section of group II revealed marked increase in the amount of collagen fibers. Group III revealed highly preserved testicular architecture almost near to that appeared in the control group except few tubules that were damaged. In conclusion, RJ protected the testicular structure from the damaging effect of diabetic oxidative stress through its antioxidant effect thus preserving male fertility.


Assuntos
Diabetes Mellitus Experimental , Testículo , Ratos , Masculino , Animais , Estreptozocina/farmacologia , Estreptozocina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Elétrons , Antioxidantes/farmacologia
9.
Arch Biochem Biophys ; 751: 109851, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065251

RESUMO

In diabetes, increased oxidative stress and impaired trace element metabolism play an important role in the pathogenesis of diabetic nephropathy. The objective of this research was to examine the outcomes of blocking the renin-angiotensin system, using either the angiotensin-converting enzyme inhibitor (ACEI), perindopril, or the angiotensin II type 1 (AT1) receptor blocker, irbesartan, on oxidative stress and trace element levels such as Zn, Mg, Cu, and Fe in the kidneys of diabetic rats that had been induced with streptozotocin. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as a control. The second group of rats developed diabetes after receiving a single intraperitoneal dose of STZ. The third and fourth groups of rats had STZ-induced diabetes and received daily dosages of irbesartan (15 mg/kg b.w/day) and perindopril (6 mg/kg b.w/day) treatment, respectively. Biochemical analysis of the kidneys showed a distinct increase in oxidative stress, indicated by heightened levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activities, as well as reduced glutathione (GSH) levels in the kidneys of diabetic rats. In the kidneys of diabetic rats, the mean levels of Fe and Cu were found to be significantly higher than those of the control group. Additionally, the mean levels of Zn and Mg were significantly lower in the diabetic rats compared to the control rats. Both perindopril and irbesartan decreased significantly MDA content and increased SOD activities and GSH levels in the kidneys of rats with diabetes. The Zn and Mg concentrations in the kidneys of diabetic rats treated with perindopril and irbesartan were markedly higher than in untreated STZ-diabetic rats, while the Cu and Fe concentrations were significantly lower. The urinary excretion of rats treated with perindopril and irbesartan showed a pronounced increase in Cu levels, along with a significant reduction in Zn and Mg levels. Although diabetic rats demonstrated degenerative morphological alterations in their kidneys, both therapies also improved diabetes-induced histopathological modifications in the kidneys. Finally, the present results suggest that manipulating the levels of Zn, Mg, Cu, and Fe - either through ACE inhibition or by blocking AT1 receptors - could be advantageous in reducing lipid peroxidation and increasing antioxidant concentration in the kidneys of diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Oligoelementos , Ratos , Animais , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Irbesartana/metabolismo , Irbesartana/farmacologia , Irbesartana/uso terapêutico , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Perindopril/metabolismo , Perindopril/farmacologia , Perindopril/uso terapêutico , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Oligoelementos/metabolismo , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico , Rim/patologia , Nefropatias Diabéticas/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
10.
Ocul Surf ; 31: 43-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141818

RESUMO

PURPOSE: Diabetes mellitus (DM) is a leading risk factor for corneal neuropathy and dry eye disease (DED). Another common consequence of DM is diabetic peripheral polyneuropathy (DPN). Both complications affect around 50 % of the DM patients but the relationship between DM, DED and DPN remains unclear. METHODS: In this study, we examined mice with early onset of DM and PN after streptozotocin (STZ)-induced diabetes (DPN). We compared the early morphological changes of the sciatic nerve, dorsal root and trigeminal ganglia with the changes in the ocular surface, including tear proteomic and we also investigated respective changes in the gene expressions and morphological alterations in the eye tissues involved in tear production. RESULTS: The lacrimal gland, conjunctival goblet cells and cornea showed morphological changes along with alterations in tear proteins without any obvious signs of ocular surface inflammation. The gene expression for respectively altered tear proteins i.e., of Clusterin in cornea, Car6, Adh3a1, and Eef1a1 in eyelids, and Pigr in the lacrimal gland also showed significant changes compared to control mice. In the trigeminal ganglia like in the dorsal root ganglia neuronal cells showed swollen mitochondria and, in the latter, there was a significant increase of NADPH oxidases and MMP9 suggestive of oxidative and neuronal stress. In the dorsal root ganglia and the sciatic nerve, there was an upregulation of a number of pro-inflammatory cytokines and pain-mediating chemokines. CONCLUSION: The early ocular changes in DM Mice only affect the lacrimal gland. Which, is reflected in the tear film composition of DPN mice. Due to the high protein concentration in tear fluid in humans, proteomic analysis in addition to noninvasive investigation of goblet cells and cornea can serve as a tools for the early diagnosis of DPN, DED in clinical practice. Early treatment could delay or even prevent the ocular complications of DM such as DED and PN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Síndromes do Olho Seco , Aparelho Lacrimal , Humanos , Camundongos , Animais , Estreptozocina/metabolismo , Neuropatias Diabéticas/metabolismo , Proteômica , Aparelho Lacrimal/metabolismo , Lágrimas/metabolismo , Síndromes do Olho Seco/diagnóstico , Inflamação/metabolismo
11.
In Vivo ; 38(1): 73-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148056

RESUMO

BACKGROUND/AIM: Oxidative stress, regulated by SOD2 and mitochondrial dynamics, contributes to muscle atrophy in diabetes. Ginger root extract (GRE) reduces oxidative stress. However, its effect on oxidative stress, mitochondrial dynamics, and muscle atrophy is not known in the diabetic muscle. This study examined the effect of GRE on intramuscular oxidative stress, mitochondrial dynamics, and muscle size in diabetic rats. MATERIALS AND METHODS: Twenty-six male Sprague-Dawley rats were randomly divided into control diet (CON; n=10), high-fat diet with one dose of 35 mg/kg streptozotocin (HFD; n=9), and high-fat diet with one dose of 35 mg/kg streptozotocin and 0.75% w/w GRE (GRE; n=7) fed for seven weeks. Subsequently, the muscle was analyzed for cross-sectional area (CSA), H2O2 concentration, and DRP-1, MFN2, Parkin, PINK1, SOD2 mRNA. Additionally, the protein levels of SOD2, DRP-1, DRP-1ser616, LC3AB, MFN2, OPA1, Parkin, and PINK1 were analyzed. CSA, H2O2 concentration, and gene and protein expression levels were analyzed using a one-way ANOVA. Correlations among intramuscular H2O2, CSA, and SOD2 protein were assessed using Pearson's bivariate correlation test. RESULTS: In the soleus, the GRE group had a greater CSA and lower intramuscular H2O2 concentration compared to the HFD group. Compared to the HFD group, the GRE group had higher SOD2 and DRP-1 mRNA levels and lower MFN2 and total OPA1 protein levels. H2O2 concentration was negatively correlated with CSA and positively correlated with SOD2. CONCLUSION: GRE attenuated intramuscular H2O2, mitochondrial fusion, and muscle size loss. These findings suggest that GRE supplementation in diabetic rats reduces oxidative stress, which may contribute to muscle size preservation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gengibre , Ratos , Masculino , Animais , Dinâmica Mitocondrial , Diabetes Mellitus Experimental/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Peróxido de Hidrogênio , Ratos Sprague-Dawley , Músculo Esquelético , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Ubiquitina-Proteína Ligases , RNA Mensageiro/metabolismo , Dieta Hiperlipídica
12.
Acta Cir Bras ; 38: e385623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055383

RESUMO

PURPOSE: Diabetes mellitus is a serious health problem worldwide, and diabetic nephropathy is the complication. The diabetic nephropathy considerably enhances the oxidative stress, glycation, lipid parameters and inflammatory reaction. Ellipticine has potent free radical scavenging and anti-inflammatory effect. METHODS: In the current study, our objectives were to thoroughly examine the renal protective effects of ellipticine in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN) and to elucidate the underlying mechanisms involved. For the induction of diabetic nephropathy, streptozotocin (50 mg/kg) was used, and rats were separated into groups and given varying doses of ellipticine (2.5, 5 and 7.5 mg/kg). The body weight, and renal weight were estimated. The inflammatory cytokines, renal biomarkers, inflammatory antioxidant, and urine parameters were estimated. RESULTS: Result showed that ellipticine considerably enhanced the body weight and reduced the renal tissue weight. Ellipticine treatment significantly (P < 0.001) repressed the level of blood urea nitrogen, serum creatinine, uric acid, blood glucose and altered the lipid parameters. Ellipticine significantly (P < 0.001) repressed the level of malonaldehyde and boosted the glutathione, catalase, superoxide dismutase, and glutathione peroxidase. Ellipticine treatment significantly (P < 0.001) reduced the inflammatory cytokines and inflammatory mediators. CONCLUSIONS: Ellipticine could be a renal protective drug via attenuating the inflammatory reaction, fibrosis and oxidative stress in streptozotocin induced rats.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Elipticinas , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Elipticinas/metabolismo , Elipticinas/farmacologia , Elipticinas/uso terapêutico , Rim , Estresse Oxidativo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peso Corporal , Diabetes Mellitus/metabolismo
13.
Biomed Khim ; 69(6): 394-402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153054

RESUMO

Hyperglycemia is one of the main damaging factors of diabetes mellitus (DM). The severity of this disease is most clearly manifested under conditions of the inflammatory process. In this work, we have studied the activation features of rat peritoneal macrophages (MPs) under conditions of high glucose concentration in vitro. Comparison of the independent and combined effects of streptozotocin-induced DM and hyperglycemia on proliferation and accumulation of nitrites in the MPs culture medium revealed similarity of their effects. Elevated glucose levels and, to a lesser extent, DM decreased basal proliferation and NO production by MPs in vitro. The use of the protein kinase C (PKC) activator, phorbol ester (PMA), abolished the proinflammatory effect of thrombin on PMs. This suggests the involvement of PKC in the effects of the protease. At the same time, the effect of thrombin on the level of nitrites in the culture medium demonstrates a pronounced dose-dependence, which was not recognized during evaluation of proliferation. Proinflammatory activation of MPs is potentiated by hyperglycemia, one of the main pathological factors of diabetes. Despite the fact that high concentrations of glucose have a significant effect on proliferation and NO production, no statistically significant differences were found between the responses of MPs obtained from healthy animals and from animals with streptozotocin-induced DM. This ratio was observed for all parameters studied in the work, during analysis of cell proliferation and measurement of nitrites in the culture medium. Thus, the results obtained indicate the leading role of elevated glucose levels in the regulation of MPs activation, which is comparable to the effect of DM and even "masks" it.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Ratos , Animais , Macrófagos Peritoneais/metabolismo , Nitritos , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Trombina/metabolismo , Trombina/farmacologia , Hiperglicemia/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C/farmacologia , Glucose/metabolismo
14.
BMC Endocr Disord ; 23(1): 254, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990213

RESUMO

BACKGROUND: Diabetic nephropathy (DN) represents a microvascular complication of diabetes mellitus (DM). Despite the increasing incidence and prevalence of DN, conservative therapy only reduces risk factors and hemodialysis. This research aimed at finding DN animal model that can be tried to be given an alternative treatment. DN was assessed by evaluating body weight, blood glucose, proteinuria, and kidney histopathology. METHODS: Wistar novergicus male rats were induced with 75 mg of streptozotocin per kg BW to obtain a diabetic nephropathy model. The 18 rats were divided into 2 groups consisting of 9 rats in the negative group (G0) and 9 rats in the positive group (G1). Indicators of body weight, blood glucose levels, urine protein and kidney histopathology determine the incidents of DN animal models. RESULT: Rats induced using 75 mg of streptozotocin per kg body weight (BW) indicated weight loss, increased blood glucose, urine protein levels and histopathological features of DN. CONCLUSION: Seventy-five mg of streptozotocin per kg BW can induce a diabetic nephropathy animal model in Wistar norvegicus rats.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Ratos , Masculino , Animais , Nefropatias Diabéticas/patologia , Estreptozocina/metabolismo , Estreptozocina/uso terapêutico , Glicemia/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/tratamento farmacológico , Rim , Modelos Animais de Doenças , Peso Corporal
15.
J Cardiovasc Pharmacol ; 82(6): 445-457, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643020

RESUMO

ABSTRACT: The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFß1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Estreptozocina/metabolismo , Ratos Endogâmicos Dahl , Hipertensão/metabolismo , Rim , Proteinúria/genética , Proteinúria/metabolismo , Insuficiência Renal Crônica/complicações , Fibrose , Pressão Sanguínea , Cloreto de Sódio na Dieta , Diabetes Mellitus/metabolismo
16.
Pflugers Arch ; 475(10): 1161-1176, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561129

RESUMO

Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H2O2), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Masculino , Nefropatias Diabéticas/tratamento farmacológico , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Creatinina/metabolismo , Creatinina/farmacologia , Peróxido de Hidrogênio/farmacologia , Diabetes Mellitus Experimental/metabolismo , Ratos Wistar , Rim/metabolismo
17.
Cardiovasc Diabetol ; 22(1): 172, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420254

RESUMO

BACKGROUND: Higher chemokine C-X-C motif ligand 5 (CXCL5) level was observed in type 2 diabetes mellitus (DM) patients; however, its role in diabetic vasculopathy was not clarified. This study aimed to explore the impacts and mechanistic insights of CXCL5 in neovasculogenesis and wound healing in DM. METHODS: Endothelial progenitor cells (EPCs) and human aortic endothelial cells (HAECs) were used in vitro. Streptozotocin-induced diabetic mice and Leprdb/JNarl mice were used as type 1 and type 2 DM models. Moreover, CXCL5 knockout mice were used to generate diabetic mice. Hindlimb ischemia surgery, aortic ring assays, matrigel plug assay, and wound healing assay were conducted. RESULTS: CXCL5 concentrations were increased in plasma and EPCs culture medium from type 2 DM patients. CXCL5 neutralizing antibody upregulated vascular endothelial growth factor (VEGF)/stromal cell-derived factor-1 (SDF-1) and promoted cell function in EPCs from type 2 DM patients and high glucose-treated EPCs from non-DM subjects as well as HAECs. CXCL5 directly up-regulated interleukin (IL)-1ß/IL-6/tumor necrosis factor-α and down-regulated VEGF/SDF-1 via ERK/p65 activation through chemokine C-X-C motif receptor 2 (CXCR2). CXCL5 neutralizing antibody recovered the blood flow after hindlimb ischemia, increased circulating EPC number, and enhanced VEGF and SDF-1 expression in ischemic muscle. CXCL5 suppression promoted neovascularization and wound healing in different diabetic animal models. The above observation could also be seen in streptozotocin-induced CXCL5 knockout diabetic mice. CONCLUSIONS: CXCL5 suppression could improve neovascularization and wound healing through CXCR2 in DM. CXCL5 may be regarded as a potential therapeutic target for vascular complications of DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Progenitoras Endoteliais , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fator A de Crescimento do Endotélio Vascular , Diabetes Mellitus Experimental/metabolismo , Estreptozocina/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Progenitoras Endoteliais/metabolismo , Quimiocina CXCL12/metabolismo , Camundongos Knockout , Cicatrização , Isquemia , Neovascularização Fisiológica/fisiologia , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo
18.
Physiol Genomics ; 55(9): 381-391, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458461

RESUMO

This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and although both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function, and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, whereas pathways that were upregulated in both doses were more upregulated in the 35 mg/kg-treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Estreptozocina/efeitos adversos , Estreptozocina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Glicemia/metabolismo
19.
J Exp Zool A Ecol Integr Physiol ; 339(10): 915-924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37522474

RESUMO

Using a rat model of type 1 diabetes (T1D) obtained by treatment with streptozotocin, an antibiotic that destroys pancreatic ß-cells, we evaluated the influence of subsequent hyperglycemia on the morphology and physiology of the Harderian gland (HG). HG is located in the medial corner of the orbit of many terrestrial vertebrates and, in rodents, is characterized by the presence of porphyrins, which being involved in the phototransduction, through photo-oxidation, produce reactive oxygen species activating the autophagy pathway. The study focused on the expression of some morphological markers involved in cell junction formation (occludin, connexin-43, and α-tubulin) and mast cell number (MCN), as well as autophagic and apoptotic pathways. The expression of enzymes involved in steroidogenesis [steroidogenic acute regulatory protein (StAR), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD)] and the level of lipid peroxidation by thiobarbituric acid reactive species assay were also evaluated. The results strongly indicate, for the first time, that T1D has a negative impact on the pathophysiology of rat HG, as evidenced by increased oxidative stress, morphological and biochemical alterations, hyperproduction and secretion of porphyrins, increased MCN, reduced protein levels of StAR and 3ß-HSD, and, finally, induced autophagy and apoptosis. All the combined data support the use of the rat HG as a suitable experimental model to elucidate the molecular damage/survival pathways elicited by stress conditions.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Glândula de Harder , Porfirinas , Animais , Ratos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glândula de Harder/metabolismo , Porfirinas/efeitos adversos , Porfirinas/metabolismo , Estreptozocina/efeitos adversos , Estreptozocina/metabolismo
20.
Environ Sci Pollut Res Int ; 30(32): 79067-79081, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37280499

RESUMO

This study investigates blackberry juice's effects on glucose metabolism, oxidative stress, inflammation, and endoplasmic reticulum stress (ER) in streptozotocin (STZ)-induced diabetic rats. Fifty Wistar rats were distributed to five groups randomly of ten rats each: Normal control, diabetic control, 9 mL/kg body weight (b.wt) blackberry juice only, blackberry juice plus diabetes, and 500 mg/kg b.wt metformin plus diabetes. A single intraperitoneal injection of 50 mg/kg b.wt STZ induced diabetes in the rats. This animal study continued for 56 days after the confirmation of diabetes. The levels of liver function and renal function, as well as insulin, glucose-6-phosphatase, glucokinase, and malondialdehyde (MDA) levels, and the activities of catalase (CAT) and superoxide dismutase (SOD), were determined. Additionally, interleukin-6 (IL-6) levels, tumor necrosis factor-alpha (TNF-α), and activated transcription factor 4 (ATF4) expressions were examined in the liver homogenate of rats. Furthermore, the liver tissues were utilized for histopathological examination. The results showed that blackberry juice prevented drastic loss of body weight and reduced food consumption in diabetic rats. Additionally, the levels of blood glucose, total protein, aspartate aminotransferase (AST), albumin, alanine aminotransferase (ALT), uric acid, creatinine, and urea improved after the administration of blackberry juice in diabetic rats. Blackberry juice significantly increased glucose metabolism and antioxidant status while reducing ER stress and inflammation in diabetic rats. Moreover, blackberry juice improved glucose metabolism by increasing insulin levels and improving the dysregulated activities of glucose-metabolizing enzymes. The microstructure of liver tissues in diabetic rats was also improved with blackberry juice treatment. Therefore, blackberry juice has the potential to alleviate diabetes in rats and could be considered as a functional food for people with diabetes.


Assuntos
Diabetes Mellitus Experimental , Rubus , Ratos , Animais , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Antocianinas/farmacologia , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado , Insulina , Inflamação/metabolismo , Glicemia/metabolismo , Estresse do Retículo Endoplasmático , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...